If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(2x)^2=2^12
We move all terms to the left:
(2x)^2-(2^12)=0
We add all the numbers together, and all the variables
2x^2-4096=0
a = 2; b = 0; c = -4096;
Δ = b2-4ac
Δ = 02-4·2·(-4096)
Δ = 32768
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{32768}=\sqrt{16384*2}=\sqrt{16384}*\sqrt{2}=128\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-128\sqrt{2}}{2*2}=\frac{0-128\sqrt{2}}{4} =-\frac{128\sqrt{2}}{4} =-32\sqrt{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+128\sqrt{2}}{2*2}=\frac{0+128\sqrt{2}}{4} =\frac{128\sqrt{2}}{4} =32\sqrt{2} $
| 3-x=-4x+3x-14 | | 4y−8=−40 | | 5/7(11/12)(x)=1 | | -1/3x-3=-1/3x+14 | | 2x+5=2.5x+4-(x-4) | | 16x+7-19x=17-3x | | 10/11(11/13)(x)=1 | | 6x+7=-6x+2 | | 10x+8x=9 | | 2(6z+2)=2(6z+2)= | | 7a+3=3a+a-18 | | 10/11*11/13(x)=1 | | -4n-3/4=-7/4n-3/2n | | X+2/x=54 | | 10/11x11/13(x)=1 | | 2/x=4+(7/3x) | | 30+(25x)=40+(15x) | | 11/13(x)=1 | | 3.1x=-2.6 | | 9+-4+n=16 | | W=8+0.50w | | -19(x)=1 | | 30+(25x)=55+(20x) | | 5+.30x=7+.20x | | 13(12x−6)=2(2x−1) | | 6=x÷-2 | | 3y+4+3y–6=34 | | -5(n–1)=7(n+3) | | 7/(a-1)=5/(a+3) | | M2=7x+11 | | 11+3x+x=2x–11 | | 14x+20x-6+5=3x+5-6 |